LOYOLA COLLEGE (AUTONOMOUS) CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FOURTH SEMESTER - APRIL 2025

PMT 4501 - FUNCTIONAL ANALYSIS

= alor = 0 1 1 1 1 1 1 1 1 1	Date: 23-04-2025	Dept. No.	Max. : 100 Marks
--	------------------	-----------	------------------

Time: 01:00 PM - 04:00 PM

SECTION-A

Answer any FOUR of the following

 $4 \times 10 = 40$

- 1. Let $T: X \to Y$ be a linear transformation, where X and Y are normed linear spaces. Prove that T is continuous if and only if T is bounded.
- 2. State and prove Holder's inequality.
- 3. State and prove the closed graph theorem.
- 4. Show that N/M is a Banach space with the defined norm when N is a Banach Space.
- 5. Prove that there exists a unique vector of smallest norm in a closed convex subset *C* of a Hilbert space *H*.
- 6. Show that an operator T on a Hilbert space H is self-adjoint if and only if (Tx, x) is real for all x in H.
- 7. Prove that if $\{e_1, e_2, e_3 \dots e_n\}$ is a finite orthonormal set in a Hilbert space H and $x \in H$ then (i) $\sum_{i=1}^{n} |(x, e_i)|^2 \le ||x||^2 \text{ (ii) } x \sum_{i=1}^{n} (x, e_i) e_i \perp e_j \text{ for each j.}$
- 8. Define the set of regular elements G in Banach Algebra and prove that G is an open set.

SECTION-B

Answer any THREE of the following

 $3 \times 20 = 60$

- 9. State and prove Hahn Banach Theorem.
- 10. State and prove the open mapping theorem.
- 11. State and prove uniform boundedness principle theorem.
- 12. Let M be a closed subspace of a Hilbert space X, prove that every $x \in X$ has unique representation x = y + z, $y \in M$, $z \in M^{\perp}$.
- 13. (i) Define Banach Algebra. Let A be Banach algebra. Show that the element $x \in A$ with ||x 1|| < 1 is regular then x is invertible and inverse of x is $x^{-1} = 1 + \sum_{n=1}^{\infty} (1 x)^n$.
 - (ii) Prove that the mapping $f: G \to G$ given by $f(x) = x^{-1}$ is continuous and is a homeomorphism.
- 14. Prove that the spectrum of an element x in a Banach Algebra A is non-empty.

\$\$\$\$\$\$\$\$\$\$\$\$\$